Investigation of the distribution of laser damage precursors at 1064 nm, 12 ns on niobia-silica and zirconia-silica mixtures.

نویسندگان

  • X Fu
  • A Melnikaitis
  • L Gallais
  • S Kiáčas
  • R Drazdys
  • V Sirutkaitis
  • M Commandré
چکیده

Simple Nb(2)O(5), ZrO(2), SiO(2) oxide coatings and their mixtures with SiO(2) have been prepared by the Ion Beam Sputtering (IBS) technique. The Laser-Induced Damage of these samples has been studied at 1064 nm, 12 ns. The laser induced damage threshold (LIDT) decreases in both sets of the mixtures with the volumetric fraction of high index material. We find that the nanosecond LIDT of the mixtures is related to the band gap of the material as it has been widely observed in the subpicosecond regime. The laser damage probability curves have been fitted firstly by a statistical approach, i.e. direct calculation of damage precursor density from damage probability and secondly by a thermal model based on absorption of initiator. The distributions of damage precursors versus fluence extracted from these fittings show a good agreement. The thermal model makes it possible to connect damage probability to precursor physical properties. A metallic defect with a maximum radius of 18 nm was proposed to the interpretation. The critical temperature in the laser damage process exhibited a dependence on the band-gap of the material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sol-gel derived antireflective coating with controlled thickness and reflective index

Optical properties and structure of antireflective coatings (AR) deposited from hydrolysed TEOS sol have been characterized in detail. The influence of various parameters on the formation of colloidal silica antireflective coatings by the dip-coating technique has been investigated. For the characterization of colloidal silica films, the UV-visible spectroscopy, laser ellipsometry, and atomic f...

متن کامل

Impact of substrate pits on laser-induced damage performance of 1064-nm high-reflective coatings.

The laser damage resistance of coatings in high-power laser systems depends significantly on the surface quality of the substrate. In our experiment, pits were precisely fabricated on the surface of fused silica substrate using a femtosecond laser processing bench. The HfO2/SiO2 high-reflective coatings at 1064 nm were deposited by conventional e-beam evaporation onto fuse...

متن کامل

In-vitro Investigations of Skin Closure using Diode Laser and Protein Solder Containing Gold Nanoshells

Introduction: Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nanoshells, a new class of nanoparticles consisting of a dielectric cor...

متن کامل

Effect of Amorphous Silica Addition on Martensitic Phase Transformation of Zirconia and Investigation of its Tetragonal Structure Stability Mechanisms

This work is focused on the effect of amorphous SiO2 addition on the phase transformation and microstructural evolution of ZrO2 particles. Considering the structural similarities between the amorphous ZrO2 and its tetragonal structure, XRD results showed initial nucleation of metastable tetragonal ZrO2 from its amorphous matrix upon heat treatment. This metastable phase is unstable in pure ZrO2...

متن کامل

Investigating the Performance Characteristics of Asphaltic Concrete Containing Nano-Silica

Using nano-technology materials in the asphalt pavement industry is new compared with Portland cement concrete. The main objective of this study is to investigate the effects of nano-silica modification on some properties of a penetration grade asphalt cement and a typical asphalt concrete. 60/70 penetration grade bitumen was modified with different percentages of nano-silica (i.e. 1, 3 and 5%,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 23  شماره 

صفحات  -

تاریخ انتشار 2012